Gaziantep Regional Project Occasional Paper 2013:2 <www.orientlab.net/pubs> © Joint Turco-Italian Archaeological Expedition to Karkemish (Bologna) ISSN 2284-2780

doi: 10.12877/grpop201302 Version: 30 November 2013

TILMEN HÖYÜK: A MINERALOGICAL-GEOCHEMICAL CHARACTERIZATION OF SOME MBA AND LBA POTTERY SAMPLES

Vanna Minguzzi, Elisa Esquilini and Elisa Zantedeschi

1. Introduction

This is a report on the archaeometric studies we carried out on Simple Ware (hereafter SW), Kitchen Ware (KW), and Preservation Ware (PW) samples from the excavations at Tilmen Höyük. Our aim is, on the one hand, to define the composition of these three functional ceramic classes and the manufacturing techniques employed (probable firing temperature and treatments of the raw material for dating purposes), on the other hand, to ascertain whether the pottery was locally manufactured by comparing it with the mudbricks found at the site, which were surely made of local raw material.

Here we present a representative sample of the assemblages dating from the Middle Bronze (hereafter MB) and from the Late Bronze (LB) ages, collected during the excavations. In particular, we analyzed samples throughout the whole 2nd millennium BC sequence of the site (cf. Marchetti 2008a; 2008b; 2008c; 2010). The transition from the Early Bronze to the beginning of the MBA (i.e. MB IA) is represented by samples from areas K5 and V, the MB IB period by samples from areas E, G and K5, MB IIB by samples from areas K5 and G (excavators deem the MB II assemblage from Area Q to be slightly earlier than the other two), and LB IA by samples from areas G, K5, M and O.

2. MATERIALS AND ANALYTICAL TECHNIQUES

2.1 Materials

We tested 42 samples of Simple Ware, 10 of Kitchen Ware, and 12 of Preservation Ware, as well as 12 samples of mudbricks, found in the same areas where the pottery specimens were collected. Table 1a lists the pottery samples, classified with the initial TIL and a progressive number, assigned independently from the functional class and the

We would like to thank the scientific staff of Gaziantep Museum and that of the General Directorate for Cultural Heritage and Museums in Ankara, for the possibility of analyzing the samples at the University of Bologna. A. Bonomo helped us in preparing the samples for analysis.

actual sherd number; Table 1b lists instead the mudbrick samples with the initial MATIL. Tables also supply the number, class, locus, and date of each sample.

SAMPLE	SHERD NUMBER	CLASS	Locus	DATING	SAMPLE	SHERD NUMBER	CLASS	Locus	DATING
TIL 1	TH.06.G.80/9	SW	F.1282	MB IIB	TIL 34	TH.06.K5.196/10	PW	F.1417	MB IIB
TIL 2	TH.06.G.80/14	SW	F.1282	MB IIB	TIL 35	TH.06.K5.163/1	SW	F.1368	LB IA
TIL 3	TH.06.G.80/3	SW	F.1282	MB IIB	TIL 36	TH.06.K5.163/4	SW	F.1368	LB IA
TIL 4	TH.06.G.80/11	SW	F.1282	MB IIB	TIL 37	TH.06.K5.163/3	SW	F.1368	LB IA
TIL 5	TH.06.G.80/15	SW	F.1282	MB IIB	TIL 38	TH.06.K5.163/2	SW	F.1368	LB IA
TIL 6	TH.06.G.80/2	PW	F.1282	MB IIB	TIL 39	TH.06.K5.163/7	SW	F.1368	LB IA
TIL 7	TH.06.G.76/1	PW	F.1279	MB IIB	TIL 40	TH.06.K5.163/8	SW	F.1368	LB IA
TIL 8	TH.06.G.76/6	PW	F.1279	MB IIB	TIL 41	TH.06.K5.163/5	SW	F.1368	LB IA
TIL 9	TH.06.G.85/1	SW	F.1279	MB IIB	TIL 42	TH.06.K5.163/13	PW	F.1368	LB IA
TIL 10	TH.06.G.85/2	SW	F.1279	MB IIB	TIL 43	TH.06.K5.134/4	SW	F.1493	MB IB
TIL 11	TH.06.G.85/3	SW	F.1279	MB IIB	TIL 44	TH.06.K5.134/1	SW	F.1493	MB IB
TIL 12	TH.06.G.85/4	SW	F.1279	MB IIB	TIL 45	TH.06.K5.134/5	SW	F.1493	MB IB
TIL 13	TH.06.K5.171/2	SW	F.1374	LB IA	TIL 46	TH.06.K5.134/6	SW	F.1493	MB IB
TIL 14	TH.06.K5.171/4	SW	F.1374	LB IA	TIL 47	TH.06.K5.131/8	SW	F.1487	MB IB
TIL 15	TH.06.K5.171/1	SW	F.1374	LB IA	TIL 48	TH.06.K5.131/4	SW	F.1487	MB IB
TIL 16	TH.06.K5.174/7	SW	F.1364	LB IA	TIL 49	TH.06.K5.131/3	SW	F.1487	MB IB
TIL 17	TH.06.K5.174/4	SW	F.1364	LB IA	TIL 50	TH.06.K5.131/18	PW	F.1487	MB IB
TIL 18	TH.06.K5.174/2	SW	F.1364	LB IA	TIL 51	TH.07.M.502/17	SW	F.2207	LB IA
TIL 19	TH.06.K5.174/6	SW	F.1364	LB IA	TIL 52	TH.07.G.261/16	PW	F.1958	LB IA
TIL 20	TH.06.K5.198/8	SW	F.1421	MB IIB	TIL 53	TH.07.Q.422/17	KW	F.2093	MB II
TIL 21	TH.06.K5.198/3	SW	F.1421	MB IIB	TIL 54	TH.07.V.550	PW	F.2153	MB IA
TIL 22	TH.06.K5.198/6	SW	F.1421	MB IIB	TIL 55	TH.07.M.507	PW	F.2212	LB IA
TIL 23	TH.06.K5.198/7	SW	F.1421	MB IIB	TIL 56	TH.07.M.502/9	SW	F.2207	LB IA
TIL 24	TH.06.K5.198/2	SW	F.1421	MB IIB	TIL 57	TH.07.M.501/16	KW	F.2207	LB IA
TIL 25	TH.06.K5.198/9	SW	F.1421	MB IIB	TIL 58	TH.07.Q.428/14	KW	F.2077	LB IA
TIL 26	TH.06.K5.253/1	SW	F.1422	MB IIB	TIL 59	TH.07.K5.156/2	KW	F.2317	MB IA
TIL 27	TH.06.K5.253/2	SW	F.1422	MB IIB	TIL 60	TH.07.K5.167/12	KW	F.1893	MB IB
TIL 28	TH.06.K5.253/4	KW	F.1422	MB IIB	TIL 61	TH.07.K5.167/11	KW	F.1893	MB IB
TIL 29	TH.06.K5.253/5	PW	F.1422	MB IIB	TIL 62	TH.07.G.269/8	KW	L.1969	MB IB
TIL 30	TH.06.K5.196/3	SW	F.1417	MB IIB	TIL 63	TH.07.K5.156/10	KW	F.2317	MB IA
TIL 31	TH.06.K5.196/1	PW	F.1417	MB IIB	TIL 64	TH.07.K5.154/1	PW	F.2302	MB IA
TIL 32	TH.06.K5.196/4	SW	F.1417	MB IIB	TIL 65	TH.07.G.262/8	KW	F.1957	MB IB
TIL 33	TH.06.K5.196/5	SW	F.1417	MB IIB					

Table 1a Sherd number, class, locus, and date of pottery samples (sample TIL 30 not considered in the analyses because too small).

SAMPLE	SAMPLE NUMBER	Locus	DATING OF CONTEXT	SAMPLE	SAMPLE NUMBER	Locus	DATING OF CONTEXT
MATIL 14	TH.07.G.253*14	F.1950	LB IA	MATIL 103	TH.06.K5.143*103	F.793	MB IIB
MATIL 20	TH.06.K5.173*20	F.1365	LB IA	MATIL 111	TH.07.Q.410*111	F.2071	MB II
MATIL 49	TH.06.G.16*1	F.1223	LB IA	MATIL 112	TH.06.K5.142*112	F.1487	MB IB
MATIL 62	TH.07.K5.5*62	F.1704	MB IB	MATIL 136	TH.07.Q.432*136	F.2092	MB II
MATIL 67	TH.07.G.262*67	F.1957	MB IB	MATIL 158	TH.07.E.273*158	F.1984	Med.
MATIL 71	TH.07.Q.409*71	F.2067	MB II	MATIL 174	TH.07.E.280*174	F.1990	MB IB

Table 1b Mudbrick samples from various contexts (the number before the * is the bucket number, the one after the * is the sample absolute number of that year).

2.2 Analytical techniques

In order to allow a correct analysis, we removed all earth residues from the samples by abrasion with a diamond file. We obtained thin and/or polished sections from significant samples and examined them with optical and scanning electron microscopes (SEM Philips 515b, 15kV, BEI). These observations yielded a detailed mineralogical characterisation, mainly as regards certain specific mineralogical phases, that had been added to the sample, or were already present in the raw material.

After that, we pulverized all the samples by grinding them in an agate mechanical mortar. We then analysed the resulting dust to determine:

- mineralogical composition, by X-ray diffraction analysis (XRD) (Philips PW1710);
- chemical composition of major elements (10), and trace elements (15) by fluorescence to X rays (XRF) (Philips PW1480);
- thermal behaviour, by thermal analysis TG, DTG, DTA (Setaram Labsys), with a heating rate of 20°C/min, CO₂ atmosphere, and a heating range between 20° and 1000°C.

We used thermal analysis to quantify the samples' Loss On Ignition (LOI), rate within specific temperature ranges. Regarding LOI up to temperatures of 300° C (H₂O absorbed) to be too oscillating and random as a parameter, we did not include it in our chemical analysis. We ascribed LOI in the range between 600° and 1000° C to CO_2 bound to the calcite present in the material, and therefore used it to quantify this calcite. In order to compare the mudbricks, which were accidently burnt in a fire and therefore not homogeneously fired, with other fired products, we assumed the sampled ones to be water-free. Finally, to underline geochemical similitude and to test hypotheses as to the provenance of the samples, we processed the data using cluster analysis and binary diagrams.

3. RESULTS

3.1 Chemical analysis and statistical processing

Tables 2a, 2b, and 2c show our chemical analyses of the pottery and the mudbrick samples as regards their content of major elements, expressed in oxides (wt%), and 15 trace elements (expressed in ppm). We ordered the samples into four groups resulting from our cluster analysis. Our results are listed in the dendrogram in Fig. 1. (The major elements detected were SiO₂, Al₂O₃, Fe₂O₃, MgO, CaO and K₂O, the trace elements V, Cr, Ni, Co, Zn, Rb, Sr, and Ba).

Group 1 is constituted of two subgroups (1a and 1b), which account for most of the SW samples, and 10 PW samples (the heavy type). The finds, although showing a quite homogeneous chemical composition and therefore a very close degree of relationship, differ substantially in their SiO₂, CaO and MgO contents, which are overall higher in Subgroup 1a, while Subgroup 1b shows higher contents of Al₂O₃, Fe₂O₃ and K₂O. As to the trace elements, we noticed basically higher Cr and Ni contents in Subgroup 1a (and in sample PW TIL 42 in Subgroup 1b), and very variable Sr contents (33-330 ppm) in both subgroups. Ba, La, and Ce are generally higher in Subgroup 1b. Moreover, SW samples TIL 20 and PW TIL 29, both in Subgroup 1a, show intermediate values between the two subgroups, as well as the above-mentioned properties.

<u>Group 2</u> comprises all the mudbrick samples, except for a PW sample designated as TIL 6, with high contents of Fe_2O_3 , Co and Zn.

Group 3 is constituted of 4 SW samples, 6 KW samples (in italics) and 1 PW samples (in bold). This group differs from the previous groups for its lower SiO₂, Zr, La, and Ce values, and basically higher MgO, CaO, and Sr values. Due to their high CaO content, samples SW TIL 26 and KW TIL 60 (represented by the discontinuous line in the cluster analysis) are also included in this group, in spite of their lower similarity degree.

Group 4 is formed of only 4 KW samples. It clearly differs from the other groups in chemical composition (CaO<4%, Al₂O₃<10%, K₂O<1%, MgO>10%, Fe₂O₃ between 11 e 13%, Co>80 ppm, Cr>2000 ppm, and Ni>1500 ppm). KW sample TIL 57 differs slightly from the other 3 samples. SW sample TIL 3 – represented by the discontinuous line in the cluster analysis – shows strongly anomalous levels of Cu and is hence not included in any of the four groups. This feature is probably due to sulphide impurities in the clay, or post-firing contamination. It is easier for archaeologists to detect such anomalies from direct examination of objects, because analyses are usually made on very little fragments, which sometimes are not totally representative of the sample they belong to. At any rate, if we had not taken Cu into consideration in our cluster analysis, the sample would have fallen within Group 1.

Ba		39	_														78																		
	:15		4	40	26	37	36	32	31	32	21	40	31	31	45	39	4	38	36	54	32	41	28	4	24	27	36	40	30	37	4	43	31	45	37
	, 4	484	574	431	528	533	488	562	587	474	573	565	762	708	642	859	614	590	554	592	503	460	865	713	363	478	391	333	433	365	449	495	398	390	419
ź	20	22	22	24	20	23	56	18	18	23	22	26	24	23	24	25	30	25	24	25	23	29	21	56	14	20	20	23	16	25	20	21	21	38	22
Zr	407	421	421	385	338	285	275	264	266	347	419	308	314	315	294	284	336	307	310	283	320	254	280	387	133	197	149	163	155	182	166	145	155	344	334
×	29	30	31	33	59	30	26	26	28	59	28	30	25	32	26	53	33	30	31	30	36	27	24	35	22	20	33	29	30	32	27	36	25	37	59
S	55	45	61	53	141	33	35	29	77	83	30	89	71	89	210	186	156	167	278	247	251	168	185	57	147	94	158	156	137	149	123	208	202	151	327
Rb	96	110	66	92	103	118	110	=======================================	109	82	8	11	73	129	104	92	26	88	115	102	87	96	108	136	28	79	94	86	102	135	122	140	112	61	70
Zn	82	74	79	93	79	95	26	92	100	88	86	78	9/	87	110	126	Ξ	106	112	109	102	148	66	88	49	71	29	82	83	96	78	98	86	09	76
J	28	24	35	36	30	27	28	28	39	31	24	61	59	30	35	32	39	41	40	36	31	78	59	35	34	40	45	46	46	42	31	47	83	41	40
ž	565	558	356	476	387	752	741	583	872	780	795	416	365	203	261	321	314	274	280	276	204	477	543	381	494	279	100	84	26	82	85	104	26	130	327
ပိ	4	39	26	33	29	52	52	46	59	49	49	37	32	21	37	45	44	32	36	40	33	25	46	40	39	34	19	19	16	18	16	24	18	16	27
ن	196	935	694	613	742	1240	1829	1444	1347	1169	944	481	285	320	366	437	478	309	362	373	340	664	1028	425	885	415	115	145	135	109	101	112	116	189	395
>	. 6	107	93	101	96	122	123	117	115	105	86	120	95	108	150	138	136	130	119	121	122	172	127	115	104	122	82	78	66	111	96	91	96	139	123
Sc	17	17	16	15	16	23	19	17	22	13	18	22	15	19	19	16	23	19	14	18	14	23	22	17	56	22	12	6	20	13	18	19	14	19	15
[5]	2.08	1.09	2.27	1.35	5.19	69.0	66.0	1.92	3.28	0.95	1.84	5.09	2.53	1.91	2.18	2.05	2.99	3.36	0.94	0.70	1.91	2.73	1.70	66.0	66.0	6.30	1.44	1.53	1.40	1.25	1.08	1.29	1.17	1.17	9.40
P,O,	30	0.30	0.17	.13	.29	.14	0.17	0.20	36	91.18	.29	0.70	.83	.23	.42	.43	.45	.42	.42	1.21	.23	68.	36	81.0	0.70	91.18	.51	.41	.32	99.	.33	141	1.53).26	116
	`																																		
K		3 2.30																																	
Na,C	0.5	0.63	0.68	0.5	0.6	0.5	0.59	0.5	0.5	0.5	0.4	0.59	0.5	0.6	0.5	0.59	0.6	0.50	9.0	9.0	0.6	0.5	0.5	0.6	0.6	9.0	0.5	0.5	0.58	0.5	0.5	0.5	0.59	0.5	0.5
CaO	1.18	1.12	1.02	1.32	4.99	86.0	1.21	2.44	1.64	4.12	1.23	1.17	1.12	1.53	5.03	5.19	2.17	3.30	9.14	8.60	7.49	3.50	3.95	1.38	9.91	8.08	7.18	7.60	9.04	4.71	4.43	6.93	10.16	13.89	10.85
ОбМ	4.67	6.20	3.21	4.72	4.98	06.9	7.34	5.74	6.59	8.78	5.05	3.15	2.15	2.43	5.31	5.15	4.10	7.75	7.17	6.87	4.95	6.46	6.91	3.18	5.69	3.65	2.50	2.49	2.33	2.54	2.39	2.79	2.37	5.24	7.44
MnO		0.12	60:	11	11	.13	.13	.17	.16	.15	.18	.13	.15	10	.18	.20	.15	.15	.15	.16	16	.15	.18	.27	.15	.14	.19	19	.16	.13	14	.13	.14	11	.14
	1																																		
Fe,O ₃	0.7	7.09	09.9	7.25	6.46	8.79	8.7	8.1	8.6	8.80	8.5	7.7	7.1	6.9	8.4	8.9	8.7	8.0	8.3	8.9	8.3	10.3	8.1	7.9	7.0	7.3	5.9	5.8	6.1	6.82	5.9	6.7	6.44	7.66	69.9
Al ₂ O ₃	12.65	13.00	14.21	12.58	12.80	14.58	14.39	14.32	13.72	12.09	15.10	14.91	13.57	16.03	14.46	14.80	15.44	14.51	14.50	15.03	13.49	16.15	13.53	15.29	12.33	14.25	12.70	12.43	13.16	15.45	13.57	13.57	13.63	20.79	11.31
TiO,	0.85	0.93	1.00	0.93	0.91	0.95	86.0	0.93	0.87	0.94	66.0	1.08	1.22	86.0	1.20	1.34	1.27	1.18	1.16	1.25	1.28	1.07	0.94	1.01	0.59	92.0	0.72	89.0	0.75	0.83	0.72	0.73	0.78	1.25	96.0
SiO, TiO, Al ₂ O ₃ Fe ₂ O ₃	, ,					_	_	~	~	_		5.99	68.53		0.05	9.11	1.57	8.06	5.27	5.24	59.52	55.12	61.42		61	_		_	63.47	63.79	67.81	62.58	60.20		20.65
. •	+	9	9	9	9	9	- 6	-9	9	9	9	9	9	9	9	56	9	Š	5.	5.	5.	ŵ	9	-0.0	9	5.	-0.5	9	9	- 0	9	- 6	9	_	\dashv
GROUP 1a	TIL 10	TIL 36	TIL 1	TIL 4	TIL 27	TIL 40	TIL 41	TIL33	TIL 37	TIL 21	TIL 56	TIL 2	TIL 51	TIL 49	TIL 14	TIL 32	TIL 9	TIL 38	TIL 13	TIL 35	TIL 24	TIL 7	TIL 39	TIL 23	TIL 15	TIL 25	TIL 11	TIL 12	TIL 46	TIL 8	TIL 50	TIL 22	TIL 44	TIL 20	TIL 29

Chemical analyses of the ceramic finds of Group 1a (major elements expressed as oxides wt%, and trace elements expressed as ppm). PW samples in bold. Table 2a

GROUP 1b																									
SAMPLE	SiO_2	TiO_2	Al_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K_2O	P ₂ O ₅	LOI	Sc	Λ	Cr C	Co	Ni Cu	u Zn	n Rb	b Sr	≻	Zr	g	Ba	La	င်
TIL 52	59.84	1.12	17.17	10.07	0.18	3.21	3.24	0.39	3.71	0.46	0.61							0 127	7 138	36	318	30	523	4	113
TIL 64	57.32	1.05	21.81	10.63	0.18	2.08	1.33	0.53	4.08	0.40	0.58	22 1				7 33		8 147		34	213	22	518	43	138
TIL 16	52.24	0.97	19.35	8.24	0.20	4.71	68.9	08.0	3.64	06.0	2.06						5 111	_		33	192	26	607	53	95
TIL 48	52.28	1.04	20.68	8.73	0.18	4.53	4.63	0.84	4.02	0.29	2.80							9 149		33	189	29	752	54	130
TIL 19	56.43	1.09	21.26	9.17	0.12	2.17	4.32	99.0	3.21	0.39	1.17	22 1	157 1					8 145	5 162	33	260	28	612	09	123
TIL 34	58.54	1.21	16.78	9.05	0.16	3.80	2.79	0.71	3.38	1.12	2.47						22 12	5 111	_	33	338	29	675	47	121
TIL 18	58.84	1.14	20.52	9.57	0.16	2.29	1.66	0.84	3.70	0.32	0.95	_						3 158		38	215	24	651	55	115
TIL 43	57.02	1.21	21.75	68.6	0.13	2.17	1.11	98.0	3.97	0.40	1.50	29 1	165 2				3 131	1 168		35	225	26	643	99	148
TIL 45	56.21	1.21	22.03	9.91	0.18	2.21	1.64	96.0	3.91	0.49	1.23							5 165		4	228	27	662	69	137
TIL 55	55.51	1.18	21.91	9.71	0.14	3.20	1.92	0.82	3.77	0.53	1.30						3 129	9 162	2 165	32	174	25	1058	09	113
TIL 42 TIL 54	52.50 50.84	0.88	16.85 27.34	9.41	$0.21 \\ 0.15$	7.64	5.74 0.59	0.63	3.30	0.66	2.17	22 1 28 1	124 8	821 £	55 66 41 16	639 5 151 4	57 111 42 137	1 125 7 110		29 38	158 305	20 31	622 599	45 58	115
GROUP 2																									
SAMPLE	SiO_2	TiO_2	Al_2O_3	Fe_2O_3	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	LOI	Sc	Λ	Cr C	Co	Ni Cu		Zn Rb	b Sr	Y	Zr	γ	Ba	La	Ce
MATIL 14	58.14	1.80	14.40	12.42	0.25	3.69	4.56	09.0	2.67	1.47	0.00	33 1	59 7	782 (69 437	7 5	1 159	6 8	1 187	27	241	24	509	33	79
MATIL 111	56.59	1.90	15.57	13.09	0.23	3.52	5.26	0.61	2.40	0.82	0.00	27 1	175 7	902	63 38	386 5	55 160	99 0	6 201	29	239	27	425	40	70
MATIL 49	59.37	1.87	15.80	12.24	0.22	3.40	3.45	0.61	2.29	92.0	0.00	27 1	.84 6	651 (68 35	354 44	4 142	.2 8]	1 178	33	278	28	521	38	105
MATIL 20	60.15	1.48	12.65	11.03	0.23	4.11	4.99	0.58	2.76	2.02	0.00	24 1	138 9	991 (67 55	550 5	56 184	83	3 241	28	237	27	462	31	72
MATIL 71	59.20	1.67	14.06	12.42	0.22	4.04	4.04	0.46	3.37	1.52	0.00	22 1	136 7	787	68 521	4	7 174	4 7	1 193	31	239	27	463	33	78
MATIL 158	57.15	1.57	12.75	11.81	0.22	4.70	7.09	0.62	2.53	1.56	0.00	20 1	8 051	068	63 55	552 5	7 177	7 64	4 202	22	179	19	420	32	71
MATIL 103	61.31	1.48	13.58	11.26	0.25	3.89	4.01	0.67	1.96	1.59	0.00	25 1	139 10	010	64 59	590 7	4 230	0 83	3 196	24	207	22	493	34	72
TIL 6	63.97	0.84	12.90	8.08	0.22	5.25	3.57	0.83	2.50	0.55	1.29	22 1	11 7	, 904	17 654	4	5 180	08 0	0 121	24	203	20	521	37	80
MATIL 62	57.06	2.12	15.98	14.28	0.28	3.62	3.18	06.0	1.86	0.71	0.00	29 2	204 9	8 576	85 35	357 4	9 158	8 49	9 159	25	232	25	613	42	98
MATIL 136	54.16	2.41	17.59	14.81	0.31	3.02	4.73	09.0	2.07	0.30	0.00	32 2	251 6	649 8	84 20	265 4	48 140	0 56	6 158	29	251	28	501	35	117
MATIL 174	49.00	2.31	19.33	15.66	0.27	4.29	5.71	0.95	1.83	0.64	0.00	29 2	207 5	513	72 35	353 3	39 133	3 36	6 224	24	178	25	403	25	49
MATIL 67	54.97	2.14	17.94	14.53	0.25	3.00	2.45	0.58	3.33	0.82	0.00	31 2	203 5	299		348 5	59 179	9 112	2 129	35	297	30	564	42	108
MATIL 112	52.78	2.38	19.73	16.35	0.25	2.85	1.97	0.85	2.14	89.0	0.00	37 2	281 6	3 669	89 33	335 47	7 187	7 87	7 120	4	342	39	648	47	106

Chemical analyses of the pottery finds and of the mudbricks of Groups 1b and 2 (major elements expressed as oxides wt%, and trace elements expressed as ppm). PW samples in bold. Table 2b

	Ce	55	52	14	23	I8	51	28	54	54	09	42		112		Ce	21	21	21	15
	La	27	29	4	9	4	22	25	32	36	31	20		42		La	8	12	II	36
	Ва	497	544	341	223	274	402	404	417	381	332	476		542		Ba	173	661	130	270
	Nb	20	IJ	8	6	4	12	14	18	20	21	15		21		Nb	6	8	61	13
	Zr	108	I0I	5	II	0	110	137	150	147	193	92		158		Zr	36	38	112	121
	Y	27	21	7	15	9	21	25	25	29	6I	12		29		Y	10	9	11	13
	Sr	476	456	II0	85	137	247	246	256	227	I0I	100		252		Sr	51	33	30	3.8
	Rb	53	53	28	I8	14	89	74	92	99	47	30		120		Rb	30	29	18	33
	Zn	94	83	54	49	49	92	87	120	105	105	93		114		Zn	16	96	95	116
	Cu	50	44	37	43	48	34	57	48	45	38	45		147		Cu	36	31	37	40
	Ņį	313	186	277	200	392	338	354	440	554	369	533		615		Ni	2349	2488	2170	1677
	Co	29	I8	20	39	46	32	34	45	43	58	20		53		Co	133	147	134	88
	Cr	365	62I	639	312	817	268	585	423	991	1197	1419		727		Cr	3256	3615	4574	1700
	Λ	100	16	II8	991	105	123	129	134	129	185	164		139		Λ	120	122	113	85
	Sc	12	13	39	35	30	21	17	16	16	31	33		16		Sc	23	23	19	15
	LOI	5.99	15.41	6.34	7.16	2.76	8.38	0.54	1.38	1.11	I.17	2.70		2.80		Γ OI	4.82	91.9	5.38	213
	P_2O_5	0.34	1.28	0.23	0.02	0.14	0.30	0.21	0.49	0.23	0.23	0.29		0.29		P_2O_5	0.14	0.22	0.18	030
	K_2O	1.79	2.03	I.18	I.16	1.35	2.20	2.00	2.94	1.66	1.47	1.43		3.18		K_2O	0.98	1.00	0.78	0.83
	Na_2O	0.61	0.36	0.58	0.80	0.75	0.97	1.19	1.18	96.0	0.97	0.67		0.67		Na_2O	0.33	0.36	0.37	0.40
	CaO	16.64	22.63	11.63	13.59	09.9	11.13	14.54	7.52	7.32	6.27	6.31		4.66		CaO	3.17	2.81	3.93	1 47
	MgO	5.04	2.71	98.9	5.50	10.75	5.55	5.74	7.60	6.97	6.53	8.75		8.21		MgO	16.71	16.95	20.11	17 77
	MnO	0.20	0.23	0.17	0.17	0.15	0.17	0.17	0.19	0.16	0.21	0.21		0.18		MnO	0.21	0.23	0.20	910
	Fe_2O_3	7.03	61.9	10.37	8.52	7.83	7.62	7.89	9.24	8.94	10.81	11.00		8.72		Fe_2O_3	13.60	13.21	11.87	11.05
	Al_2O_3	10.26	9.85	19.48	17.74	19.70	12.48	11.80	14.46	12.02	17.93	16.65		16.22		Al_2O_3	7.70	7.02	7.47	808
	TiO_2	92.0	69.0	0.35	0.56	0.26	0.74	0.77	0.85	68.0	1.36	0.93		0.84		TiO_2	0.37	0.38	0.38	0 20
	SiO_2	51.33	38.62	42.83	44.74	49.70	50.46	55.15	54.15	59.75	53.06	51.06		54.24		SiO_2	51.96	51.66	49.34	2117
GROUP 3	SAMPLE	TIL 26	TIL 60	TIL 62	TIL 65	TIL 53	TIL 17	TIL 47	TIL 5	TIL 31	TIL 28	TIL 58	SAMPLE	TIL 3	GROUP 4	SAMPLE	TIL 61	TIL 63	TIL 59	TH 57

Chemical analyses of the pottery finds and of the mudbricks of Groups 3 and 4 (major elements expressed as oxides wt%, and trace elements expressed as ppm). KW samples in italics. PW samples in bold. Table 2c

Figs. 2, 3, and 4 illustrate binary diagrams for Al₂O₃/MgO, Fe₂O₃/Co and MgO/Cr, chosen to exemplify the chemical characteristics of each of the group highlighted by our cluster analysis. In particular, the Al₂O₃/MgO diagram shows that Group 4 (4 KW) stands out clearly from the others for its high MgO and low Al₂O₃ contents. The remaining samples, which constitute a homogeneous group, show a significant variability of Al₂O₃ content. In Fe₂O₃/Co diagram strong correlation between the two elements could be noticed in all samples, except those of Group 4. We also observed that mudbricks show the richest content of Fe₂O₃ and Co. Moreover the MgO/Cr diagram highlights, on the one hand, the strong homogeneity of the samples of the first three groups and, on the other, a meaningful correlation between the two elements in the Group 4 samples, where the contents of these elements are higher.

3.2 Mineralogical analysis

We performed X-ray diffraction (XRD) and thermal analyses (TG, DTG, DTA) on all samples. The latter revealed calcite percentages and thus clarified the nature of some mineralogical phases, such as those of chlorite, talc, and serpentine. We further observed some pottery finds and some mudbricks, whose mineralogical composition was hard to interpret with a polarizing microscope and a scanning electron microscope. These analyses provided a very detailed and thorough overview of the mineralogical composition of the samples.

3.2.1 Diffractometric data

Tables 3a and 3b show the data provided by our diffractometric analysis. The data is subdivided by type and rearranged according to the cluster analysis sequence. We attributed a semiquantitative estimate to each recognized mineralogical phase, reporting the relative contents of each individual sample. Our diffractometric analyses evidenced compositional trends in agreement with those revealed by the chemical analysis. Our data analysis evidenced that SW and PW samples of the first group present both compositional analogies and significant differences with respect to the Group 3 SW samples.

The first group samples are characterized by the predominance of the quartz phase, and after that by K-feldspars and plagioclases, which show variable contents ranging from significant to mere traces. Most of the samples also show clinopyroxenes and gehlenite – in quantities ranging from traces to significant – and traces of calcite, a small content of illite and micas, and a variable content of hematite.

Simi	PLE WARE															
GR.	SAMPLE	Qz	K-feld	Plg	Cpx	Geh	Hem	Magh	Ill/Mic	Amph	Cal	Chl	Opx	Serp	Talc	Oliv
	TIL 10	xxxx	tr	tr	tr		tr		tr		tr			_		
	TIL 36	xxxx	tr	tr	tr				tr	tr						
	TIL 1	xxxx	tr	tr	tr				tr		tr					
	TIL 4	xxxx	tr	tr	tr			tr	tr		tr		tr			
	TIL 27	xxxx	tr	tr	tr		tr		tr		X					
	TIL 40	xxxx	tr	tr	tr		tr		tr				x			
	TIL 41	xxxx	x	tr	tr		tr	x	tr				x			
	TIL 33	xxxx	tr	tr	tr				x		tr					
	TIL 37	xxxx	x	tr	tr						tr					
	TIL 21	xxxx	x	tr	x		tr				tr					x
	TIL 56	xxxx	x	x	tr				x		tr	x	tr			
	TIL 2	xxxx	x	tr	tr				x		tr		tr			
	TIL 51	xxxx	x	x					x		tr					
	TIL 49	xxxx	x	tr	tr		tr		tr							
	TIL 14	xxxx	x	tr	tr				tr		tr					
1a	TIL 32	xxxx	x	tr	tr		tr									
	TIL 9	xxxx	x	tr					tr		tr					
	TIL 38	xxxx	tr	tr	x		tr		tr		tr					
	TIL 13	xxxx	ХX	хх	хх	x	tr				tr					
	TIL 35	xxxx	хх	х	хх	x	X				_					
	TIL 24	xxxx	x	x	x	tr	tr		tr		tr					
	TIL 39	XXXX	tr	A	x	u	· ·		u		tr		x			
	TIL 23	xxxx	tr	tr	tr	tr	tr		tr		tr					
	TIL 15	XXXX	x	x	хх	x	· ·		tr	x	u					
	TIL 25	xxxx	x	x	x		tr		x	x	хх					
	TIL 11	xxxx	x	x	x	x	tr		tr	••	tr					
	TIL 12	XXXX	x	x	x	x			u		tr					
	TIL 46	XXXX	x	tr	x	x	tr				tr					
	TIL 22	XXXX	x	tr	x	x			tr		tr					
	TIL 44	XXXX	x	x	x	x			tr		tr					
	TIL 20	XXXX	X X	X	X X	X X	хх		tr		x x					
	TIL 16	XXXX	X	tr	X	X	X		tr		tr					
	TIL 48	xxxx	x	x	x	x			X		X					
1b	TIL 19	xxxx	tr	tr	tr	X	tr	tr	tr		tr					
	TIL 18 TIL 43	XXXX	X	tr	x	X	X		v		tr					
	TIL 45	X X X X X X X X	X X	tr tr	tr tr		tr x		x tr		и					
	TIL 26	XXXX	X X	хх	xxx	x	X		X		хх					
3	TIL 17	xxxx	X	хх	X		X		X		$\mathbf{x} \ \mathbf{x} \ \mathbf{x}$	X				
	TIL 47	XXXX	ХX	хх	XXXX				_							
-	TIL 5 TIL 3	XXXX	X X	хх	X X	X	tr	v	X X		tr					
	11L J	XXXX	X		X		u	X	Á		u					

Table 3a Semiquantitative mineralogical analysis obtained by XRD of SW samples. Qz = quartz; K-feld = K-feldspars; Plg = plagioclase; Cpx = clinopyroxene; Geh = gehlenite; Hem = hematite; Magh = maghemite; Cal = calcite; Ill/Mic = illite/mica; Amph = amphibole; Chl = chlorite; Opx = orthopyroxene; Serp = serpentine; Talc = talc; Oliv = olivine. xxxx very abundant; xxx abundant; xx significant; x modest; tr = traces.

PRES	SERVATION '	WARE														
GR.	SAMPLE	Qz	K-feld	Plg	Срх	Geh	Hem	Magh	Ill/Mic	Amph	Cal	Chl	Opx	Serp	Talc	Oliv
	TIL 7	xxxx	x	tr	tr		tr	tr	X			tr				
1a	TIL 8	xxxx	x	tr	tr	tr	tr		tr		tr					
14	TIL 50	xxxx	tr	tr			tr		tr							
	TIL 29	x x x x	tr	tr	X				tr		хх					
	TIL 52	$x \times x \times x$	tr	X	tr		tr	tr								
	TIL 64	$x \times x \times x$	X				X	X	X							
1b	TIL 34	xxxx	tr	tr					X							
	TIL 55	xxxx	X	X					X		tr					
	TIL 42	xxxx	X	tr	X		tr	X	tr		tr		X			
	TIL 54	XXXX	X				X	X	X		tr	tr	X			
2	TIL 6	XXXX	X	tr	X		tr		tr		tr					
3	TIL 31	xxxx	X	X	X	X	X			X	X					
Kito	CHEN WARE	1														
GR.	SAMPLE	Qz	K-feld	Plg	Cpx	Geh	Hem	Magh	Ill/Mic	Amph	Cal	Chl	Opx	Serp	Talc	Oliv
	TIL 60	хх							tr		$\mathbf{x} \ \mathbf{x} \ \mathbf{x} \ \mathbf{x}$					
	TIL 62	x x x	x	X	хх				X	$x \times x$	$\mathbf{x} \ \mathbf{x} \ \mathbf{x} \ \mathbf{x}$	X			X	
3	TIL 65	хх	X	хх	X				tr	$x \times x$	$\mathbf{x} \ \mathbf{x} \ \mathbf{x} \ \mathbf{x}$				X	
	TIL 53	хх	X	хх	хх					$x \times x \times x$	хх	хх			хх	
	TIL 28	xxxx	X	хх	ххх				X	X	tr					
	TIL 58	XXXX	хх		XXX					XXX	tr	X				
	TIL 61	xxx		ххх						ххх		ххх	хх	xxxx	хх	
4	TIL 63	xxxx								XXX		XXX	хх	xxxx	хх	
	TIL 59	XXX								xxxx		ххх	хх	XXX		
<u> </u>	TIL 57	XXXX	X	X	X			хх			tr		хх			
	DBRICKS		T7 C 1 1	DI	-	<u> </u>	**	37.1	711.0.4		G 1	G1.1			TD 1	01:
GR.	SAMPLE	Qz	K-feld	Plg	Срх	Geh	Hem	Magh	Ill/Mic	Amph	Cal	Chl	Opx	Serp	Talc	Oliv
	MATIL 14	XXXX	X	X							tr					
	MATIL 111	xxxx	X	X	хх		tr		X		tr					
	MATIL 49	$x \times x \times x$	X	X	tr				X		x					
	MATIL 20	xxxx	хх	x	x		x	X	x		tr					x
	MATIL 71	xxxx	хх	x			tr		x							
2	MATIL 158	xxxx	ххх	хх			x			X	хх					x
	MATIL 103	xxxx	хх	хх	x	x			x	ххх	x	tr				
	MATIL 62	xxxx	хх	хх			хх		tr		x					
	MATIL 136	xxxx	x	хх					x	tr	x					
	MATIL 174	xxxx	x	ххх	ххх	хх	x			хх		x		хх		x
	MATIL 67	xxxx	X	x			x		x							
<u> </u>	MATIL 112	xxxx	X	X	tr			X			tr					X

Table 3b Semiquantitative mineralogical analysis obtained by XRD of PW, KW, and mudbrick samples. Qz = quartz; K-feld = K-feldspars; Plg = plagioclase; Cpx = clinopyroxene; Geh = gehlenite; Hem = hematite; Magh = maghemite; Cal = calcite; Ill/Mic = illite/mica; Amph = amphibole; Chl = chlorite; Opx = orthopyroxene; Serp = serpentine; Talc = talc; Oliv = olivine. xxxx very abundant; xxx abundant; xxx significant; x modest; tr = traces.

It is worth noting that in some samples the occurrence of maghemite, chlorite, enstatite, amphibole and olivine is scarce and sporadic. In the SW findings, belonging to

Group 3, our analysis highlighted a more abundant content of K-feldspars and plagioclases than in the previous samples. Moreover clinopyroxenes, gehlenite and calcite occurred in variable quantities (from absent to abundant). In particular, in sample SW TIL 47 the clinopyroxenes are very abundant, and we can suppose that they are prevalently of primary source because there is no good correlation. Sample PW TIL 6 – isolated in Group 2 – contains a prevalence of quartz, while the other phases, already showed in Group 1, are present in scarce quantities. In the mudbricks samples, all belonging to Group 2, the mineralogical composition is comparable to that of Group 1 samples, but gehlenite and clinopyroxenes are only sporadically present, while calcite is often widespread. The KW finds belong to Groups 3 and 4, and show strong compositional differences by comparison with the remaining sampling. In particular, we detected a great heterogeneity in quartz, feldspar, clinopyroxenes and calcite content in the finds of Group 3. Here the phases, which appeared only as traces in the other samples (amphiboles, chlorite, orthopyroxenes enstatite type, talc), are present in very abundant quantities, albeit not in all the samples. In sample KW TIL 60, instead, calcite constitutes the predominant phase.

The Group 4 finds, which displayed a marked chemical difference, have a completely different mineralogical composition from those of Group 3, with an abundance of amphibole, chlorite, enstatite, serpentine and talc (KW TIL 61). In sample KW TIL 57, the phases observed in the other three samples of Group 4, were not detected, except for a significant quantity of enstatite. We did not detect any gehlenite or hematite in either groups.²

3.2.2 Optical observations

In order to confirm and complete the diffractometric data, and address interpretative problems that cannot be completely solved with other investigations, we used a polarizing microscope to carry out further observations on some thin sections. In particular, we still lacked a clear understanding of the nature of the calcite abundantly present in the KW samples TIL 60, TIL 62 and TIL 65, and in some of the SW findings. The characterization of clinopyroxenes, which are very abundant especially in the KW samples of the third group and in SW TIL 47, was also an important clue to the origin of the samples, which was previously supposed to be primary. Our optical observations on

It is well known that gehlenite and clinopyroxenes (diopside type) are Ca-silicates formed as secondary phases at high temperatures due to the reactions between carbonates and silicates present in the raw material. Their abundance is linked to the original high content of carbonate and to the firing temperature. Samples having high CaO content and Ca-silicate phases of high temperature in quantities from low to absent, but abundant presence of calcite, are considered to be ceramics fired at temperatures below 700-800°C. Instead, samples having high CaO content, abundant Ca-silicate secondary phases and calcite relics are considered to be artefacts fired at temperatures around 800-900°C. (Maggetti 1994; Veniale 1994; Minguzzi *et al.* 1995). However, clinopyroxenes can also be originally present (primary phases). In the first case the Ca and Sr contents are correlated, in the second they are not. The element Sr is geochemically compatible with Ca in carbonates and not in silicates; a good correlation between these two elements indicates that Ca-silicate high temperature phases mainly derive from carbonates of raw material.

sample KW TIL 57, on the one hand, confirmed the diffractometric data, and, on the other, highlighted the mineralogical phases which had not eluded our previous investigation.³ Moreover optical observation revealed, for all the KW samples, a coarse grain size visible even to the naked eye. Pl. I: 3 shows a panoramic photomicrograph of sample KW TIL 62 where this characteristic is recognizable. As regards the nature of calcite, it is worth noting that in the KW samples TIL 60, TIL 62 and TIL 65 large sparry clasts with squared edges (probably added) are present (see Pl. I: 4-5); while in sample KW TIL 65 calcite is present in micritic clasts with sparry veins (Pl. I: 6). In some of the SW samples, where diffrattometric and thermal analyses revealed significant quantities of calcite, one can make out clasts of micritic calcite, sometimes of significant size, which were not completely destroyed by firing. Regarding the nature of the clinopyroxenes, in the examined KW samples of Groups 3 and 4 they are present as large crystals of augitic type and primary origin (Pl. II: 1); therefore in sample SW TIL 47, the origin of the abundant clinopyroxenes is predominantly primary.

Our optical observations of sample KW TIL 57, also conducted with an electron microscope, revealed the presence of large quartz clasts and chalcedony concretions (Pls. I: 1, II: 2). The presence of these phases explains the higher content of SiO₂ in the sample. This sample also includes some serpentinite clasts and, in the other samples of the fourth group, olivine replaced by serpentine (Pl. I: 2), and relic olivine crystals not detected earlier by the diffractometric analysis. In Group 3, we recognized the presence of lithic fragments (gabbros, diorites; Pl. II: 3). In the same group, we also observed that some of the mudbrick samples had a very heterogeneous composition. In addition to a fine fraction resulting from the clay component, we detected the presence of a coarse fraction formed by lithic fragments of quartz-feldspatic, carbonatic and ophiolitic nature, as well as isolated crystals of these types. In the mixture there were also impressions of vegetal residues (for other observations on mudbrick sample MATIL 20, cf. Bargossi *et al.* in press).

4. DISCUSSION AND CONCLUDING REMARKS

Our geochemical and mineralogical analyses provided detailed knowledge of the composition of the pottery artefacts and the techniques employed to manufacture them (firing temperature and treatment of the raw material). As to raw materials, our observations allowed to hypothesize an origin for them, based on comparisons with the mudbricks and with the geolithologic situation of the Tilmen Höyük area. Our analyses show that the SW and PW samples show similarities both in composition and in grain size (medium coarse), as autoptic analysis had already suggested. The KW samples

We would like to underline that illite, mica and other layer silicates cannot always be identified appropriately by diffractometric analysis, because their structure is damaged during firing. Moreover the mineralogical phases present in low quantities (<3%), or semi-amorphous phases are not detectable with this analytical methodology. The presence of these minerals is better detected through by optical microscopy and by scanning electron microscopy.

differ from the aforementioned pottery class for their composition, their coarse grain size, and for the traces of blackening due to their use.

4.1 Composition

From our analyses of the data reported in the previous sections, we can deduce that most of the SW and PW samples show a fairly homogeneous composition, even though there are changes in some of the contents of the major and trace elements. These variations could depend on the contribution of raw materials of different nature, and also on artificial processing. Four SW samples and one sample of PW have different compositions and show geochemical affinity with a group of KW samples. Sample PW TIL 6 is isolated in the mudbrick group. The KW samples do not have compositional homogeneity with the SW and PW samples (with the exception of the above mentioned five SW samples), and are divided into two groups with different mineral-geochemical characteristics. Within the two groups, sample KW TIL 57 shows anomalous compositional characteristics. Since this artefact is dated to the LBA, whereas the other three are dated to the MBA, only further examination of case studies of contemporary samples could explain why this is the case. Even sample KW TIL 60, as mentioned above, has a composition that is much richer in calcite than that of the other KW samples.

4.2 Manufacturing techniques

4.2.1 Treatments

Regarding the SW samples, it is possible to infer that in some cases their characteristics were modified by human processing. Our analyses revealed primary crystals of clinopyroxene and calcite micritic clasts, which were probably added. In the PW samples, the low content of calcite may be due either to the original characteristics of the material or to depuration. The potters perhaps wanted to obtain products that were less porous and hence more suitable for food preservation. The KW samples show, as we mentioned above, very different characteristics compared to the other two ceramic classes. Our optical and diffractometric analyses revealed mineral phases, either in single large crystals or in lithic fragments, which were not found (or found only in traces) in the SW and PW samples. This characteristic is common to KW from the Mediterranean basin area. In this area, where kaolinitic clay – excellent refractory clay for KW manufacturing – is scarce, the Kitchen Ware was made with a predominantly illitic clay, more or less carbonatic and rich in Fe compounds, which was also used for other ceramic types. A lot of temper material, constituted by large crystals and lithic clasts of varied nature (ground calcite, quartz sand, pyroxenes, volcanic materials, etc.), was subsequently added to this clay. The aim of this technique was to obtain coarse mixtures with great porosity, low shrinkage and low thermal conductivity. These characteristics made the pottery suitable for standing the thermal shocks related to their

use, and allowed slower cooking (Cuomo di Caprio 2007; Olcese 1994b; Olcese, Picon 1994).

4.2.2 Firing temperature

As regards firing temperatures, the SW and PW samples including gehlenite, secondary clinopyroxenes and calcite wrecks were fired at a temperature certainly >800°C. Whereas the firing temperature is <800°C when a greater quantity of calcite is present in the samples, and the gehlenite and secondary clinopyroxenes are low or absent (cf. no. 1). However, we must consider that in the samples derived from a raw material, which is poor in carbonate and has a low CaO content, the silicatic phases of high temperature formation are low. In these cases it is difficult to determine the firing temperature with any degree of accuracy. The firing temperature of the KW samples was certainly lower, because in the analyzed samples phyllosilicate and carbonate mineral phases are still present, which did not change their nature. For this ceramic class, the aforementioned authors indicate firing temperatures <700°C. The choice of firing temperature was hardly haphazard, on the contrary, it was carefully planned. At higher temperatures ceramic components have reactions that can change the technological characteristics of pottery types.

4.3 Provenance

The Tilmen Höyük geological area is lithologically very rich and varied. There are outcrops of Plio-Quaternary age basalts emplaced over Paleozoic lithostratigraphic units, formed by Mesozoic carbonatic and quartz-sandy sediments and units, with carbonatic sediment and ophiolites with gabbros, ultramafites and chromitites (cf. Bargossi *et al.* 2013). In addition to the rocks in place, there are also incoherent sediments with variable grain size (sand and clay), resulting from the erosion, the transport and the sedimentation of the substrate. Very heterogeneous materials were therefore available to the potters, and used for ceramic artefacts with different characteristics. A very important aim of this research was to ascertain whether the materials of the ceramic artefacts under study were local. Our mineralogical study of the mudbricks, which we chose as a reference as one can safely assume that they were locally produced, revealed a coherent composition with contributions of raw material of different nature formed from lithotypes present in the area.

Our cluster analysis of the entire sample placed the mudbrick samples in a separate group, which is strongly related to the group including PW samples and almost all the SW samples (with the exception of five samples mentioned above). Therefore for these samples we assume a derivation from local raw materials in different proportions: predominantly quartz-feldspatic for samples with higher Al content, ophiolitic for samples with significant Fe₂O₃, MgO, Cr and Ni contents, and carbonatic (probably in part added), for samples with higher CaO amount. Five of the SW samples are of local

provenance, but they derive from a more carbonatic material, originally present or added as temper.

Regarding the KW samples, they have a composition which differs from the other two ceramics classes. One group is less connected to the group of mudbricks, while another group (4 samples) is clearly distinct from it. The first group is characterized by the presence of carbonatic material and scarcer ophiolitic contribution; while for the second group a clear ophiolitic nature contribution was detected. Therefore we can assume a local provenance for this ceramic class, too. Sample KW TIL 57 has a lithological composition that was not found in the area, but we cannot rule out that it is equally of local origin. Ancient potters chose raw materials with a suitable composition for the making of artefacts with specific technological characteristics.

In addition to all these considerations, there remains to be explored the possibility of a relationship between the composition, the manufacturing techniques and the dating of the pottery samples. In the analysed samples, correlations of this type were not observed. However, if we expand the sampling, especially for the PW and KW types, we may come up with different kinds of answers to the same question.

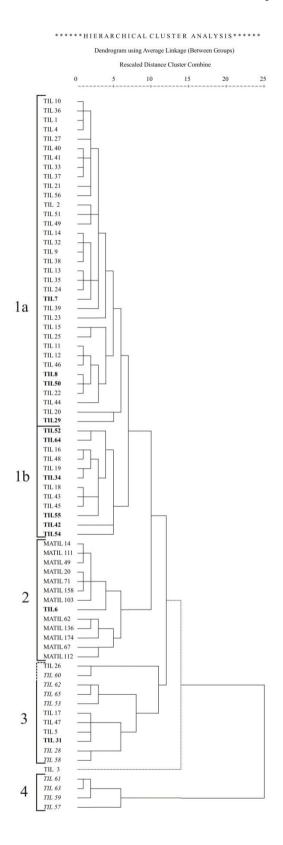


Fig. 1 Dendrogram of the cluster analysis. KW samples (italics), PW samples (bold).

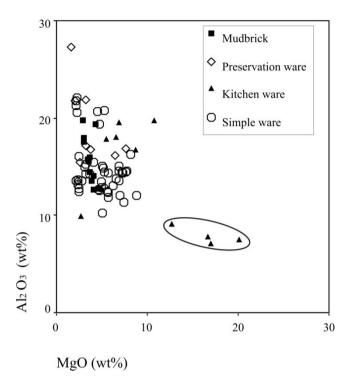


Fig. 2 Binary diagram MgO/Al₂O₃.

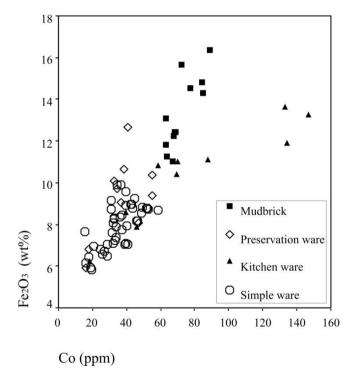


Fig. 3 Binary diagram Co/Fe₂O₃.

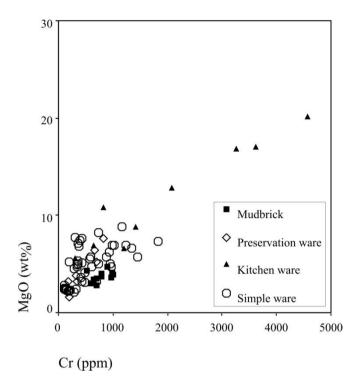


Fig. 4 Binary diagram Cr/MgO.

BIBLIOGRAPHY

Bargossi, G.M., Gasparotto, G., Marocchi, M.

2013 Tilmen Höyük: Petrographic and Geochemical Investigation on Lithic Remains from the Palace Area (GRPOP 2013:1), Ante Quem, Bologna.

Tilmen Höyük: Petrographic and Geochemical Investigation of Ceiling and Plaster in press Remains from the Acropolis (GRPOP), Ante Quem, Bologna.

Burragato, F., Grubessi, O., Lazzarini, L. (eds)

1994 1st European Workshop on Archaeological Ceramics, Università di Roma «La Sapienza»,

Córdoba, J.M., Molist, M., Pérez, M.C., Rubio, I., Martínez, S. (eds)

Proceedings of the 5th International Congress on the Archaeology of the Ancient Near East, 2008 Madrid, April 3-8 2006, II, UAM, Madrid.

Cuomo di Caprio, N.

2007 Ceramica in archeologia 2. Antiche tecniche di lavorazione e moderni metodi di indagine, L'Erma di Bretschneider, Roma.

Kühne, H., Czichon, R., Janoscha Kreppner, F. (eds)

Proceedings of the 4th International Congress on the Archaeology of the Ancient Near East 2008 (29 March - 3 April 2004, Freie Universität Berlin), II. Social and Cultural Transformation: The Archaeology of Transitional Periods and Dark Ages, Excavation Reports, Harrassowitz, Wiesbaden.

Maggetti, M.

1994 Mineralogical and Petrographical Methods for the Study of Ancient Pottery: F. Burragato, O. Grubessi, L. Lazzarini (eds), 1st European Workshop, pp. 23-35.

Marchetti, N.

2008a A Preliminary Report on the 2003 and 2004 Excavations at Tilmen Höyük: H. Kühne, R. Czichon, F. Janoscha Kreppner (eds), Proceedings of the 4th International Congress on the Archaeology of the Ancient Near East, II, pp. 353-360.

2008b A Preliminary Report on the 2005 and 2006 Excavations at Tilmen Hövük: J.M. Córdoba et al. (eds), Proceedings of the 5th International Congress on the Archaeology of the Ancient Near East, II, pp. 465-479.

Scavi e ricerche 2003-2006 a Tilmen Höyük in Turchia sud-orientale: La Parola del 2008c Passato 63, pp. 124-138.

2010 A Preliminary Report on the 2007 and 2008 Excavations and Restorations at Tilmen Höyük: P. Matthiae et al. (eds), Proceedings of the 6th International Congress of the Archaeology of the Ancient Near East, II, pp. 369-383.

Matthiae, P., Pinnock, F., Nigro, L., Marchetti, N. (eds)

2010 Proceedings of the 6th International Congress of the Archaeology of the Ancient Near East, May, 5th-10th 2008, "La Sapienza" - Università di Roma, II, Harrassowitz, Wiesbaden.

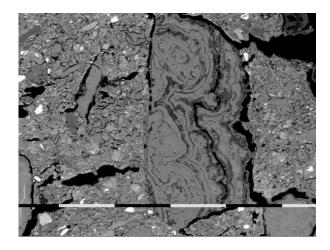
Minguzzi, V., Morandi, N., Nannetti, M.C., Trentini, P., Mattioli, C., Marchesi, M., Trocchi, T.

1995 Caratterizzazione minero-geochimica e studi termici di varie tipologie di "Concotto" di età etrusca (Marzabotto, BO): Mineralogica et petrographica acta 38, pp. 1-9.

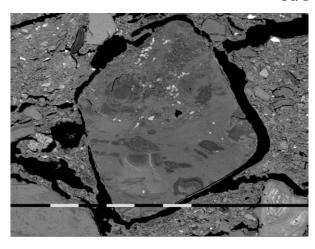
Olcese, G. (ed.)

1994a Ceramica romana e archeometria: lo stato degli studi. Atti delle Giornate internazionali di studio, Castello di Montefugoni (Firenze), 26-27 Aprile 1993, All'Insegna del Giglio, Firenze.

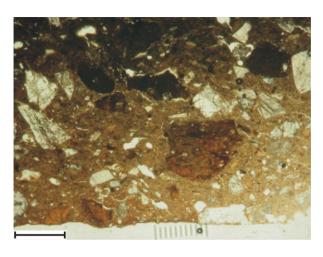
Olcese, G.

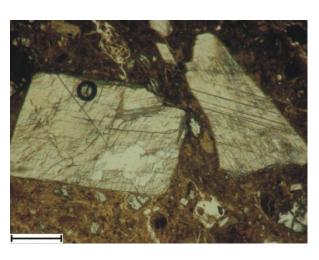

1994b Ceramiche comuni ed archeometria: G. Olcese (ed.), Ceramica romana e archeometria, pp. 89-103.

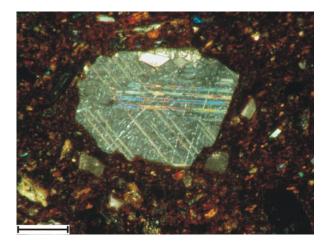
Olcese, G., Picon, M.

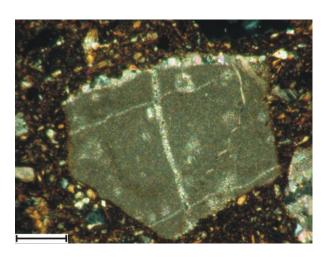

Per una classificazione in laboratorio delle ceramiche comuni: G. Olcese (ed.), *Ceramica romana e archeometria*, pp. 105-114.

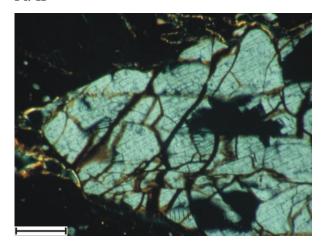
Veniale, F.

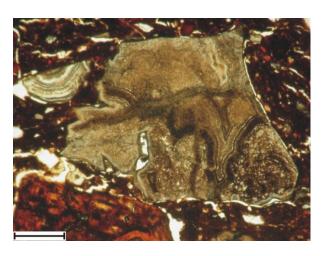

Raw Materials Manufacturing Processes in Ancient Ceramic Artefacts: F. Burragato, O. Grubessi, L. Lazzarini (eds), *1*st *European Workshop*, pp. 55-72.

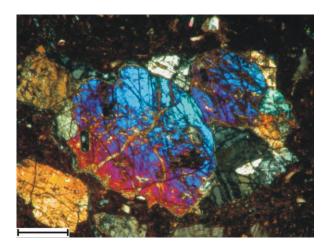

1 SEM image of chalcedony in sample KW TIL 57 (BEI, bar scale=0.1mm).


2 SEM image of serpentinized olivine in sample KW TIL 57 (BEI, bar scale=0.1mm).


3 Panoramic photomicrograph (plane-polarized light, bar scale=1350 $\mu m)$ of sample KW TIL 62.


4 Photomicrograph of calcite sparry clasts (plane-polarized light, bar scale=400 μm) in sample KW TIL 62.


5 Photomicrograph of calcite sparry clast (crossed-polarized light, bar scale=400 μm) in sample KW TIL 65.


6 Photomicrograph of calcite micritic clasts with sparry veins (crossed-polarized light, bar scale=400 µm) in sample KW TIL 65.

1 Photomicrograph of clinopyroxene (augitic type) crystal (crossed-polarized light, bar scale=250 μ m) in sample KW TIL 57.

2 Photomicrograph of chalcedony crystal (plane-polarized light, bar scale=650 μm) in sample KW TIL 57.

3 Photomicrograph of gabbro fragments (crossed-polarized light, bar scale=650 μm) in sample KW TIL 62.